Putt LengthPutt Lengthz=^β1SE^β1
How is this different from the test statistic for linear regression?
z=^β1SE^β1
How is this different from the test statistic for linear regression?
z=^β1SE^β1
How is this different from the test statistic for linear regression?
z=^β1SE^β1
How is this different from the test statistic for linear regression?
z=^β1SE^β1
What do you think goes in this blank to calculate a confidence interval (instead of t∗ as it was for linear regression)?
^β1±[_∗]SE^β1
What do you think goes in this blank to calculate a confidence interval (instead of t∗ as it was for linear regression)?
^β1±[z∗]SE^β1
What do you think goes in this blank to calculate a confidence interval (instead of t∗ as it was for linear regression)?
^β1±[z∗]SE^β1
What do you think goes in this blank to calculate a confidence interval (instead of t∗ as it was for linear regression)?
^β1±[z∗]SE^β1
qnorm(0.975)
## [1] 1.96Where are my degrees of freedom when calculating z∗?
^β1±[z∗]SE^β1
qnorm(0.975)
## [1] 1.96Where are my degrees of freedom when calculating z∗?
^β1±[z∗]SE^β1
qnorm(0.975)
## [1] 1.96^β1±[z∗]SE^β1
How do you convert log(odds) to odds?
^β1±[z∗]SE^β1
How do you convert log(odds) to odds?
e^β1±[z∗]SE^β1
We are interested in the relationship between Backpack weight and Back problems.
data("Backpack")glm(BackProblems ~ BackpackWeight, data = Backpack, family = "binomial") %>% tidy(exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 2 x 7## term estimate std.error statistic p.value conf.low conf.high## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 0.281 0.496 -2.56 0.0105 0.102 0.725## 2 BackpackWeight 1.04 0.0370 1.18 0.239 0.971 1.13We are interested in the relationship between Backpack weight and Back problems.
data("Backpack")glm(BackProblems ~ BackpackWeight, data = Backpack, family = "binomial") %>% tidy(exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 2 x 7## term estimate std.error statistic p.value conf.low conf.high## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 0.281 0.496 -2.56 0.0105 0.102 0.725## 2 BackpackWeight 1.04 0.0370 1.18 0.239 0.971 1.13We are interested in the relationship between Backpack weight and Back problems.
data("Backpack")glm(BackProblems ~ BackpackWeight, data = Backpack, family = "binomial") %>% tidy(exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 2 x 7## term estimate std.error statistic p.value conf.low conf.high## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 0.281 0.496 -2.56 0.0105 0.102 0.725## 2 BackpackWeight 1.04 0.0370 1.18 0.239 0.971 1.13data("Backpack")glm(BackProblems ~ BackpackWeight, data = Backpack, family = "binomial") %>% tidy(exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 2 x 7## term estimate std.error statistic p.value conf.low conf.high## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 0.281 0.496 -2.56 0.0105 0.102 0.725## 2 BackpackWeight 1.04 0.0370 1.18 0.239 0.971 1.13data("Backpack")glm(BackProblems ~ BackpackWeight, data = Backpack, family = "binomial") %>% tidy(exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 2 x 7## term estimate std.error statistic p.value conf.low conf.high## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 0.281 0.496 -2.56 0.0105 0.102 0.725## 2 BackpackWeight 1.04 0.0370 1.18 0.239 0.971 1.13data("Backpack")glm(BackProblems ~ BackpackWeight, data = Backpack, family = "binomial") %>% tidy(exponentiate = TRUE, conf.int = TRUE)
## # A tibble: 2 x 7## term estimate std.error statistic p.value conf.low conf.high## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 0.281 0.496 -2.56 0.0105 0.102 0.725## 2 BackpackWeight 1.04 0.0370 1.18 0.239 0.971 1.13Putt LengthPutt LengthAre these models nested?
What are the degrees of freedom for the deviance for Model 1?
What are the degrees of freedom for the deviance for Model 1?
What are the degrees of freedom for the deviance for Model 2?
What are the degrees of freedom for the deviance for Model 2?
(−2logL1)−(−2logL2)
What do you think the degrees of freedom are for this difference?
(−2logL1)−(−2logL2)
What do you think the degrees of freedom are for this difference?
(−2logL1)−(−2logL2)
What is the null hypothesis again?
(−2logL1)−(−2logL2) 👈 test statistic
How do you think we compute a p-value for this test?
(−2logL1)−(−2logL2) 👈 test statistic
How do you think we compute a p-value for this test?
(−2logL1)−(−2logL2) 👈 test statistic
pchisq(L_0 - L, df = 1, lower.tail = FALSE)data(MedGPA)glm(Acceptance ~ GPA, data = MedGPA, family = "binomial") %>% glance()
## # A tibble: 1 x 7## null.deviance df.null logLik AIC BIC deviance df.residual## <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int>## 1 75.8 54 -28.4 60.8 64.9 56.8 53What is the "drop in deviance"?
data(MedGPA)glm(Acceptance ~ GPA, data = MedGPA, family = "binomial") %>% glance()
## # A tibble: 1 x 7## null.deviance df.null logLik AIC BIC deviance df.residual## <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int>## 1 75.8 54 -28.4 60.8 64.9 56.8 53What is the "drop in deviance"?
data(MedGPA)glm(Acceptance ~ GPA, data = MedGPA, family = "binomial") %>% glance()
## # A tibble: 1 x 7## null.deviance df.null logLik AIC BIC deviance df.residual## <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int>## 1 75.8 54 -28.4 60.8 64.9 56.8 53What are the degrees of freedom for this difference?
data(MedGPA)glm(Acceptance ~ GPA, data = MedGPA, family = "binomial") %>% glance()
## # A tibble: 1 x 7## null.deviance df.null logLik AIC BIC deviance df.residual## <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int>## 1 75.8 54 -28.4 60.8 64.9 56.8 53What are the degrees of freedom for this difference?
data(MedGPA)glm(Acceptance ~ GPA, data = MedGPA, family = "binomial") %>% glance()
## # A tibble: 1 x 7## null.deviance df.null logLik AIC BIC deviance df.residual## <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int>## 1 75.8 54 -28.4 60.8 64.9 56.8 53What is the result of the hypothesis test? How do you interpret this?
data(MedGPA)glm(Acceptance ~ GPA, data = MedGPA, family = "binomial") %>% glance()
## # A tibble: 1 x 7## null.deviance df.null logLik AIC BIC deviance df.residual## <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int>## 1 75.8 54 -28.4 60.8 64.9 56.8 53pchisq(19, 1, lower.tail = FALSE)
## [1] 1.31e-05Putt LengthPutt LengthMade from the Length of the PuttLengthPutt LengthPutt LengthKeyboard shortcuts
| ↑, ←, Pg Up, k | Go to previous slide |
| ↓, →, Pg Dn, Space, j | Go to next slide |
| Home | Go to first slide |
| End | Go to last slide |
| Number + Return | Go to specific slide |
| b / m / f | Toggle blackout / mirrored / fullscreen mode |
| c | Clone slideshow |
| p | Toggle presenter mode |
| t | Restart the presentation timer |
| ?, h | Toggle this help |
| Esc | Back to slideshow |