+ - 0:00:00
Notes for current slide
Notes for next slide

Regression and correlation

1 / 7

Partitioning variability

2 / 7

Why?

  • yy¯=(y^y¯)+(yy^)
3 / 7

Why?

  • yy¯=(y^y¯)+(yy^)

  • (yy¯)2=(y^y¯)2+(yy^)2

3 / 7

Why?

  • yy¯=(y^y¯)+(yy^)

  • (yy¯)2=(y^y¯)2+(yy^)2

  • SSTotal = SSModel + SSE

3 / 7

coefficient of determination

Often referred to as r2, it is the fraction of the response variability that is explained by the model.

4 / 7

Coefficient of determination

  • r2=Variability explained by the modelTotal variability in y
5 / 7

Coefficient of determination

  • r2=Variability explained by the modelTotal variability in y
  • r2=SSModelSSTotal
5 / 7

Coefficient of determination

  • r2=Variability explained by the modelTotal variability in y
  • r2=SSModelSSTotal
  • r2=(y^y¯)2(yy¯)2
5 / 7

Coefficient of determination

  • r2=Variability explained by the modelTotal variability in y
  • r2=SSModelSSTotal
  • r2=(y^y¯)2(yy¯)2
  • r2=SSTotal − SSESSTotal
5 / 7

Coefficient of determination

  • r2=Variability explained by the modelTotal variability in y
  • r2=SSModelSSTotal
  • r2=(y^y¯)2(yy¯)2
  • r2=SSTotal − SSESSTotal
  • r2=1SSESSTotal
5 / 7

Let's do it in R!

lm(Weight ~ WingLength, data = Sparrows) %>%
glance()
## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.614 0.611 1.40 181. 2.62e-25 2 -203. 411. 419.
## # … with 2 more variables: deviance <dbl>, df.residual <int>

61% of the variation in "Weight" is explained by "Wing Length".

6 / 7
7 / 7

Partitioning variability

2 / 7
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow