library(tidyverse)
library(broom)
library(Stat2Data)
data("NFL2007Standings")
lm(WinPct ~ PointsFor, data = NFL2007Standings) %>%
glance()
## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.762 0.754 0.103 95.8 7.53e-11 2 28.3 -50.7 -46.3
## # … with 2 more variables: deviance <dbl>, df.residual <int>
lm(WinPct ~ PointsFor + PointsAgainst, data = NFL2007Standings) %>%
glance()
## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value df logLik AIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
## 1 0.884 0.876 0.0730 111. 2.60e-14 3 39.9 -71.9
## # … with 3 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>
The R2 for the first model is 0.76. The adjusted R2 is 0.75.
The R2 for the second model is 0.88. The adjusted R2 is 0.876.
The second model is preferable.